Mining Annotation Usage Rules: A Case Study
with MicroProfile

Batyr Nuryyev, Ajay Kumar Jha, Sarah Nadi
University of Alberta, Edmonton, Canada
{nuryyev, ajaykuml, nadi} @ualberta.ca

Abstract—While Application Programming Interfaces (APIs)
allow easier reuse of existing functionality, developers might
make mistakes in using these APIs (a.k.a. API misuses). If an
API usage specification exists, then automatically detecting such
misuses becomes feasible. Since manually encoding specifications
is a tedious process, there has been a lot of research regarding
pattern-based specification mining. However, while annotations
are widely used in Java enterprise microservices frameworks,
most of these pattern-based rule discovery techniques have not
considered annotation-based API usage rules. In this industrial
case study of MicroProfile, an open-source Java microservices
framework developed by IBM and others, we investigate whether
the idea of pattern-based discovery of rules can be applied
to annotation-based API usages. We find that our pattern-
based approach mines 23 candidate rules, among which 4 are
fully valid specifications and 8 are partially valid specifications.
Opverall, our technique mines 12 valid rules, 10 of which are not
even documented in the official MicroProfile documentation. To
evaluate the usefulness of the mined rules, we scan MicroProfile
client projects for violations. We find 100 violations of 5 rules
in 16 projects. Our results suggest that the mined rules can be
useful in detecting and preventing annotation-based API misuses.

Index Terms—pattern mining, API usages, annotation

I. INTRODUCTION

The microservice architectural style (“developing a single
application as a suite of small services, each running in
its own process”) is becoming more popular since it allows
independent development and deployment of different parts
of a system, as well as flexibility in choosing the technology
stack to usd] There are various frameworkd’f| that facilitate
the development of microservice-based Java enterprise appli-
cations, including MicroProfile [1].

MicroProfile is an open-source Java microservices frame-
work developed by the open source community including
IBM, Red Hat, Payara, Tomitribe [1f]. It provides essential
functionality for the development of microservices, such as
fault tolerance where backup microservices are specified if
one service becomes unavailable. Client developers use Mi-
croProfile mainly through annotation-based Application Pro-
gramming Interfaces (APIs). For example, in Listing [I] using
the MicroProfile @Asynchronous annotation indicates that
method foo () will be executed asynchronously. However,
the top foo () will not work as expected, because there is

"Microservices Adoption Report: https://www.oreilly.com/pub/pr/3307
2Spring Boot: https://spring.io/projects/spring-boot
3Micronaut: https://micronaut.io/

Yee-Kang Chang, Emily Jiang, Vijay Sundaresan

IBM, Markham, Canada

yeekangc @ca.ibm.com, emijiang @uk.ibm.com, vijaysun@ca.ibm.com

// Incorrect usage! Leads to runtime exception
@ Asynchronous

public String foo() { ... }

// Correct usage

@ Asynchronous

public CompletionStage<String> foo() { ... }

Listing 1: Correct and Incorrect example usage of the Micro-
Profile @Asynchronous annotation [2].

an implicit API usage rule that any method annotated with
@Asynchronous should return an object of type Future
or CompletionStage [2]. If a method annotated with
@Asynchronous does not return either types, a run-time
exception is thrown. We refer to such incorrect usages of the
API as misuses. While the above misuse leads to an exception
that alerts developers that something went wrong, there are
also annotation misuses that lead to silent faulty behavior
without any explicit error. For example, the author of Stack
Overflow question 53934514 experiences an issue where an
HTTP endpoint returns HTTP 200 “OK” instead of HTTP
401 “Unauthorized”, because they did not add annotation
@RolesAllowed on a method (endpoint) that they want to
limit access to (administrator vs user). Unfortunately, the Java
compiler does not check for either of these API misuses. Thus,
it would be useful to have automated tools that can specify
and check for correct annotation usage.

Annotations are widely used in microservices as well as
other Java applications [3[, [4], and they can be misused
in various ways [5]. There is existing work on designing
specification languages to encode annotation usage rules and
developing tools to ensure these rules are respected [6]]—[8]].
However, these annotation checkers assume that an API expert
will write the rules or that these rules are explicitly specified
in the documentation. Unfortunately, API usage rules are
not always documented and expecting framework developers
to exert extra effort to encode them in a new specification
language is not practical. Ideally, such rules should be auto-
matically inferred.

A popular way to automatically extract API usage rules is
to employ pattern mining. The idea of automatically mining
general API usage rules, not specific to annotations, has been
extensively investigated in the literature [9]—[/11]]. The common
underlying premise is that frequent API usages indicate rules

http://stackoverflow.com/questions/53934514

that should be respected. However, these efforts do not take
annotation usages into account and focus on verifying API
usages with control and data flow relationships, typically
within the same method. Different from API usage constraints
within a method, existing studies [6], [8] on the manual
encoding of annotation usage rules indicate that annotation
usages do not have a particular order, and the relationships
between annotations typically span multiple code elements and
artifacts, including configuration files. Thus, tracking and min-
ing such annotation usage is a challenging task, particularly
because there is no obvious code linkage between annotations
and their dependent code elements or artifacts that we can
leverage.

In this work, we describe our collaboration with IBM to
devise techniques that mine usage rules (a.k.a specifications)
for MicroProfile annotations. Such specifications can later be
encoded as static analysis checks to detect API misuses, or
specified in the API documentation to prevent misuse. To infer
annotation usage rules, we first investigate annotation usage
constraints by manually analyzing existing annotation usage
rules present in the official MicroProfile documentation [|1]] and
other online resources. Based on our observations, we devise
a frequent-itemset based pattern mining approach for mining
annotation usage rules, which includes the development of
various optimization techniques to improve the accuracy and
diversity of the mined usage rules.

Overall, we mine 23 candidate rules from 533 MicroProfile
projects. Among the 23 candidate rules, a domain expert from
IBM confirms 12 rules for MicroProfile. We compare the
confirmed rules with the annotation usage rules mentioned in
the official MicroProfile documentation and find that ten of
the confirmed rules are not documented. This indicates that
our approach is effective in discovering new rules and can
be useful in improving documentation, which in turn can be
useful in preventing annotation misuse. We also scan the 533
MicroProfile projects for violations of the confirmed rules.
We find 100 violations of five mined rules in 16 projects,
which indicates that the confirmed rules are useful in detecting
annotation-based API misuse. Overall, this paper makes the
following main contributions:

« Investigate code facts and relationships that need to be con-
sidered for mining annotation usage rules for MicroProfile.

o Adapt the well-established frequent itemset mining algo-
rithm to mine annotation usage rules.

« Develop various optimization techniques to increase diver-
sity of mined rules and decrease their redundancy.

« Evaluate the effectiveness of our approach by mining anno-
tation usage rules from 533 MicroProfile client projects and
verifying the mined rules with a domain expert, who is a
direct contributor to MicroProfile.

« Evaluate the usefulness of the mined rules by detecting and
reporting violations in 533 MicroProfile client projects.

o A discussion of our experiences and potential future work.

We also provide all our scripts and data (excluding propri-
etary projects) in our online replication package [|12].

’ N
1]
1 Open Rest N

1| Tracing Open API Client Config :
! 1
1 Fault . JWT 1
I'| Tolerance Metrics Authenticatian Health 1
1

. MicroProfile _!

P

Fig. 1: MicroProfile APIs/components

II. BACKGROUND

In this section, we first introduce microservices and our
target framework, MicroProfile. We also introduce Java an-
notations and how they are used in MicroProfile. Finally,
we explain how frequent itemset mining works, which is the
pattern mining algorithm we use in our approach.

A. Microservices and MicroProfile

The Microservice architectural style involves building a web
application as a set of smaller (“micro”) services, each running
in a separate process. Microservices have the advantage that
they can be independently developed, deployed and scaled.

MicroProfile is an open-source framework that provides a
collection of APIs to facilitate the development of microser-
vices in Enterprise Java web applications [1]. MicroProfile
provides specifications as separate components, shown in
Figure [T] basically decomposing the MicroProfile API based
on different aspects of microservices. For example, developers
can use the Health component to monitor the health status
of their services. A full description of all the components is
available on the official website for MicroProfile [1]].

B. Java annotations & API usage rules

MicroProfile provides its functionality primarily through
Java annotations. Java annotations are a form of metadata
applied on a variety of language constructs, such as classes,
methods, fields, and method parameter Annotations provide
a convenient way of applying additional behavior to annotated
constructs, whether at compile or run time.

Consider the @Asynchronous annotation from the Micro-
Profile Fault Tolerance API shown in Listing [T} According to
the documentation, this annotation can be applied on a class
or method [2]. If @RAsynchronous is used on a method,
then the method will be invoked in a separate thread. Even
though using the annotation seems very simple, it comes with
an additional usage constraint. As shown in Listing [I] if a
method is annotated with @Asynchronous, it must return
Future or CompletionStage<T>. Otherwise, a run-time
FaultToleranceDefinitionException occurs [2].

C. Frequent Itemset Mining

Frequent itemset mining is primarily used for association
rule learning, a data mining technique for discovering inter-
esting relationships between items in large databases [13]].

Consider the following formal definition of frequent
itemset mining [14]. Let I = {i1,42,...,%,} be a set of
items and D = {t1,t9,...,t,} be a database of (observed)
transactions, where each transaction contains a subset of

“https://docs.oracle.com/javase/8/docs/technotes/guides/language/annotations.html

the items in I. Let X be an itemset, which is a set of one
or more items belonging to . To find interesting patterns,
frequent itemset mining uses the notion of support, supp(X),
which is the number of transactions an itemset X appears
in. For example, given I = {bread,jam,eggs}, we may
have observed the following (purchase) transactions D =
{{bread}, {eggs}, {bread, eggs}, {bread, eggs}, {bread, jam
+, {bread, jam, eggs}}. In this case, supp({eggs}) = 4 while
supp({bread,eggs}) = 3. Given a user-provided support
threshold suppp,, € N, itemset X is called frequent if and
only if supp(X) > suppmin. In this example, a support
threshold of 3 would produce only {eggs}, {bread}, and
{bread, eggs} as frequent itemsets.

Once frequent itemsets are retrieved, they can be used
to generate association rules. Association rules are relational
rules of the form “If Y, then Z”, or more precisely ¥ — Z
where Y, Z C F and F is a frequent itemset. The “if” part
is called antecedent, and the “then” part is called consequent.
Association rules come with their own indicator called con-
fidence. Confidence of a rule ¥ — Z is a measure of
how often an association rule ¥ = Z has been found
to be true in all the retrieved transactions: conf(Y — Z2)
= supp(Y U Z) / supp(Y). Following the above example,
conf(bread = eggs) is 60% since 3 of the 5 transactions that
contain bread also contain eggs, while conf(eggs = bread)
is 75%. While the minimum support threshold supp,i, helps
us mine frequent itemsets within a database of transactions,
the minimum confidence threshold con f,,,;, helps us generate
association rules with strong “if-then” relations between items.
In other words, an association rule ¥ =—> 7 is generated, if
and only if conf(Y = Z) > con fumin.

III. INVESTIGATING PROPERTIES OF MICROPROFILE
ANNOTATION-BASED API USAGES

Most of the existing work on mining API usage focuses on
data and control flow information [9], [[10]. Given the different
nature of annotations, we first need to identify what kind of
information (code facts) we need to track to be able to mine
annotation usage rules. Although existing work on the manual
encoding of annotation usage rules identify some code facts,
the results are not based on a systematic study of annotation
usage [|6], [8]. Thus, the identified code facts might not be
sufficient for MicroProfile annotation usage.

To understand how MicroProfile annotations are meant to
be used (or misused), we search for any mention of annotation
usage rules in the official MicroProfile documentation [|1]].
In addition, we search Stack Overflow for any issues client
developers have faced while using MicroProfile’s API.

To identify existing issues with the usage of MicroProfile
annotations on Stack Overflow, we search for posts with
tag microproﬁleﬂ As of March 29, 2022, there were 262
questions related to MicroProfile. We look at each post’s
title, body, comments, and answers to identify any annota-
tion usage rules. For example, in question 53934514, the

Shttps://stackoverflow.com/questions/tagged/microprofile

question author is struggling to secure an HTTP endpoint
using JSON Web Tokens (JWTﬂ They have a field of type
JsonWebToken, which has access to JWT features. How-
ever, when the application is deployed and tested locally, the
field has value of null and the application does not throw
(or even log) any error. The accepted answer to the problem
is to use @RolesAllowed on the endpoint along with
@DeclareRoles on the class. Based on the accepted an-
swer, we infer the following rule: “If an Application class
is annotated with @LoginConfig with parameter value
authMethod="MP-JWT”, then methods annotated with
@GET should be annotated with @RolesAllowed and the
Application class should be annotated with @DeclareRoles
or the roles must be defined in web.xml”. We present all
such inferred rules to our IBM collaborators for confirmation.
In this example, they clarify that adding @DeclareRoles
is not always necessary and there are other role annota-
tions that can also be used depending on the intention.
Thus, we modify the extracted rule to: “If Application
class is annotated with @LoginConfig with parameter
value authMethod="MP-JWT”, then a method annotated
with @GET, or its containing class, must be annotated with
@RolesAllowed, @PermitAll, or @DenyAll.”

In total, we extract 12 annotation usage rules for seven dif-
ferent MicroProfile annotations (available on our artifact page).
Among the 12 rules, 11 are from the official documentation
and one is from Stack Overflow. Based on these annotation
usage rules, we identify three code elements that are involved
in annotation usage: annotations, program elements (e.g.,
method return and field types), and configuration files. Among
the 12 rules, two rules contain only annotations, one rule
contains annotation and configuration files, and the remaining
nine rules contain annotations and other program elements.

Based on the 12 manually extracted rules, we identify the
following relationships that we would need to track:

o annotatedWith to track an annotation on a program element.
We observe the following program elements: class, field,
method, constructor and method/constructor parameters.

o hasType to track the type of a field.

e hasParam to track a parameter type of some program
element, including annotation parameters.

o hasReturnType to track a method’s return type.

o extends to track class extensions of MicroProfile classes.

o implements to track a class implementations of MicroProfile
interfaces.

e definedIn to track the connection between an annotation
parameter value and a key defined in microprofile—
config.properties configuration file.

e declaredInBeans to connect a class to the beans . xml file
that typically contains class configurations.

IV. MINING MICROPROFILE ANNOTATION USAGES

Figure 2] shows a high-level overview of our approach for
mining annotation usage patterns. Based on the relationships

Shttps://jwt.io/

http://stackoverflow.com/questions/53934514

Pre-processed

Code Transactions Transactions

. . Frequent
Parsin P Pre-processin > L
@_' 9 - P 9 1 Itemset Mining
Frequent
Projects Confirmed Candidate 't
e N

Encoding into ﬁ 9 ﬁ Post-processing
[— - h
static checkers and rule generation

Violations

Fig. 2: Overview of our mining and validation approach.

Expert
developers

we identified in Section we first parse client projects to
extract transactions, where each item in a transaction corre-
sponds to one of these relationships (Section [[V-A). We then
pre-process the extracted transactions to ensure that we mine
as many diverse annotation usage patterns as possible (Sec-
tion [TV-B). We then use frequent itemset mining to mine usage
patterns as frequent itemsets (Section [[V-C). Finally, we post-
process the frequent itemsets to remove invalid patterns and
generate candidate rules in an “if-then” form (Section [[V-D).
The expert validation of candidate rules and the encoding of
confirmed rules are part of our evaluation setup (Section [V).

A. PFarsing Input Client Projects to Extract Transactions

We use JavaParser to parse client projects and extract
transactions that represent annotation usage examples from
client code [13]. Figure [3] depicts an example of a code
snippet and configuration files, as well as the relationships
that we extract from this example. In Figure [3a] there are three
entities that we keep track of: class, field, and method. For the
purposes of frequent itemset mining, we store the code facts
of each entity in a separate transaction. In other words, in our
context, an item is a relationship that tracks some code fact
and a transaction is a usage example with a list of observed
relationships. In the figure, we have the “Transaction 1” area
that contains a transaction that represents the field count
and the “Transaction 2” area that contains a transaction that
represents the method foo. For example, in “Transaction 27,
we extract the relationship “Method hasParam String”, which
means that the method has a parameter of type String.
Note that we do not create a separate transaction for the class
Foo and instead put all relevant class information into all
transactions that represent the class members such as its fields
and methods. The reason for this decision is that creating
a separate transaction for a class would not allow us to
mine potential rules that involve relationships between classes
and fields or classes and methods. On the other hand, we
do not encode information of multiple members of a class
together in a transaction, because it will be impossible to track
which information belongs to which member of a class (e.g.,
encoding two different methods in the same transaction would
not differentiate their parameters).

The above process produces a list of transactions from client
projects. In the next step, we proceed to pre-processing these
transactions before we mine frequent itemsets from them.

yd

e ("/foc™)
public class Foo extends Mtrics | }

el (name="count.property")!
teger count;

ic Future foo(String id)\ .

count.property=100
...

(b) Example beans.xml file config.properties file

Fig. 3: Parsing client projects into transactions based on
supported relationships

B. Pre-processing Transactions

Since API usage distribution might be skewed in client
projects, after we convert usages into transactions, we pre-
process the transactions by normalizing the API usage distri-
bution before mining patterns from them.

Take a set of unique transactions from each project:
Frequent itemset mining is likely to yield common usages
(idioms), while our goal is to ideally mine only usage patterns
that represent usage specifications. One of the reasons for
mining common idioms is skewed input data. One project
might have thousands of usages that are the same, while other
projects have insignificant to no amount of such usages. To
reduce the bias towards few projects, we take a set of unique
transactions per project. For example, if project A has a list of
transactions [T1, T2, T3], where T1 and T2 are identical
(i.e., have the same items), we keep T1 and delete T2, ending
up with [T1, T3]. Thus, our rule mining prioritizes usages
that appear in multiple projects rather than just one project.

Partition transactions by annotations: The
MicroProfile framework spreads its functionality into
different components (represented as different packages),
such as Rest Client and Fault Tolerance, as shown in
Figure [T We observe that there is an imbalance in terms
of frequency of usage of different packages and their
annotations. For example, the MicroProfile Rest Client
(i.e., org.eclipse.microprofile.rest.client)
package is used frequently, whereas MicroProfile Reactive
(i.e., org.eclipse.microprofile.reactive) is
used rarely. We also observe the same frequency differences
for the annotations within these packages; there is only a
small fraction of annotations within each package that is
frequently used by client developers. For example, within the
MicroProfile Rest Client package, @RegisterRestClient
is used frequently, whereas @RestClientBuilder is used

(c) Example microprofile-

rarely. Overall, these observations indicate that using a fixed
support threshold to mine annotation usage rules for all
MicroProfile annotations would not work.

Therefore, to increase the likelihood of mining rules from
not-so-popular annotations, we partition the list of all transac-
tions mined from the projects into smaller, separate lists for
each annotation. So if a transaction has multiple MicroProfile
annotations, the transaction will appear in multiple transaction
lists. We mine frequent itemsets from each of these transaction
lists separately in the next step.

C. Mining Frequent Itemsets

We leverage the parallelized version of the popular mining
algorithm FP-Growth [16]], [17] to mine frequent itemsets.
FP-Growth constructs a prefix tree FP-Tree of transactions,
from which only frequent itemsets are generated. However,
frequent itsemset mining usually produces a large number of
frequent itemsets that are not very useful or too similar to each
other. For example, one frequent itemset can be a superset
of several others. We therefore post-process frequent itemsets
before generating any candidate usage rules.

1) Optimizing Frequent Itemsets: Based on our observa-
tions as well as discussions with our IBM collaborators, we
develop a set of optimization techniques that help us focus on
the most relevant frequent itemsets and remove irrelevant ones.
These heuristics have to be applied in the described order.

Remove redundant frequent itemsets: To reduce the
number of similar frequent itemsets, we keep only maximal
frequent itemsets, i.e., frequent itemsets that have no proper
superset. For example, say we mine two frequent itemsets
A, B € F, where F is the set of all frequent itemsets, and
A ={a,b} and B = {a,b,c}. Since B is a superset of A by
inclusion (B D A) and already includes all the information
contained within A, we keep only B and remove A.

Remove frequent itemsets with no target API usage:
Developers tend to use different libraries and frameworks in
their code to accomplish different tasks. Our technique focuses
on mining API usages of MicroProfile. Therefore, we are not
interested in API usages from other libraries or frameworks.
Thus, we remove all frequent itemsets that do not have at least
one element of MicroProfile API.

Remove semantically incorrect frequent itemsets: A
frequent itemset must contain relationships that form a seman-
tically correct sequence of actions for a given usage. Other-
wise, a frequent itemset will result in meaningless association
rules. We identify two conditions, both related to annotation
parameters, for semantically incorrect frequent itemsets. First,
a frequent itemset has a “@A hasParam P” relationship,
but not a “.. annotatedWith @A” relationship. Second, a
frequent itemset has a “P definedIn Config” relationship, but
not a “@A hasParam P” relationship. Basically, recording
that an annotation has a parameter without the presence of
the annotation on a program element in the first place is
meaningless. Similarly, recording that an annotation parameter
is present in a configuration file without the presence of this
parameter as part of an annotation is meaningless. Note that

while transactions always capture semantically correct code,
and thus these conditions always hold, the same is not true
for frequent itemsets, which is why we need this filtering step.
For example, given transactions 71 = { “class annotatedWith
@A”, “@A hasParam x”} and Ty = { “method annotatedWith
@A”, “@A hasParam x”} and minimum support 2, we will
get a frequent itemset ' = {“@A hasParam x”}. However,
this frequent itemset is meaningless and does not represent
a semantically valid usage. Thus, we exclude any frequent
itemsets that violate the above two conditions.

D. Generating Candidate Rules

We generate association rules from the remaining semanti-
cally valid maximal frequent itemsets with MicroProfile API
usages from Section We refer to these association rules
as candidate API usage rules (or candidate rules for short),
because they represent potential usage rules, but we cannot be
certain until they have been verified by an API expert.

Association rule mining generates candidate rules in the
form of antecedent and consequent. Given a frequent itemset
F = {X, Y}, association rule mining will generate rules
Ry = {X = Y} and Ry, = {Y = X} as long as the
minimum confidence threshold is met, regardless of whether
the semantics of an implication in that direction makes sense or
not. Based on our earlier manual extraction of annotation rules
(Section [MI), we observe two types of implicit implication
directions related to annotations that we leverage to modify
the order of likely incorrect implications. First, the presence
of an annotation may imply the need for other related program
elements (e.g., method return and field types), not the other
way around. For example, a field annotated with @A may imply
that this field must have a specific type T. However, it is
unlikely that the fact that a field is of a specific type T implies
that the field must be annotated with a specific annotation.
Second, the presence of method and field-level annotations
can imply the need for specific class-level annotations, but the
other way round is unlikely. Thus, we check if a generated
candidate rule contains an unlikely implication direction and
change the order of the implication to increase the chances of
this candidate rule being correct.

V. EVALUATION

To evaluate the effectiveness of our approach and usefulness
of the mined candidate rules, we investigate the following
reasearch questions:

« RQ1: How effective is our pattern mining approach
in discovering annotation usage rules? We investigate
whether our approach can mine correct annotation usage
rules. Since the mined candidate rules may not exactly
match a correct usage rule (e.g., have extra or missing
relationships), we investigate how much the candidate rules
have to be edited to become correct rules. We also investi-
gate whether our approach can mine known rules (manually
extracted in Section and new rules (not documented).

« RQ2: How common are violations of mined annotation
usage rules? To demonstrate the potential usefulness of the

mined and confirmed usage rules, we encode them into static
checkers and search for violations of these rules in projects.

A. RQI: Effectiveness of our approach

1) Evaluation Setup: To evaluate our approach, we re-
trieve client projects that use MicroProfile using its GitHub
repository’s dependency graph. We filter out toy projects and
focus only on those repositories whose title does not contain
any of the following keywords: “demo”, “example”, “play-
ground”, “getting-started”, “sample”, “starter”, “quickstart”,
“quick-start”, “tutorial”’; and whose sizes are more than 500
KB. We do not filter out projects by stars, because we find
that the majority of the projects have no stars due to the
framework being relatively new (first released in 2016 [1]])
and the tendency of the client projects to be closed-source. To
address the latter issue, we also clone 81 proprietary closed-
source projects from the IBM GitHub organization. In total,
we analyze 533 MicroProfile projects.

2) Method: We follow the methods we described in Sec-
tion After parsing the client projects into transactions and
pre-processing the transactions, we mine frequent itemsets per
API. We set the relative minimum support threshold to 80%,
which means that an itemset is frequent if and only if it appears
in at least 80% of transactions. We choose 80% threshold,
because our initial experiments showed that values lower
than that lead to too many frequent itemsets being generated
without gain of any new information, while higher values lead
to very few frequent itemsets. We then generate candidate rules
from the frequent itemsets with an 85% confidence threshold.
Since the candidate rules may not necessarily represent correct
MicroProfile API usage rules, we present our candidate rules
to a domain expert, who is one of our IBM collaborators and
a direct contributor to MicroProfile.

Precision and Recall: We ask the domain expert to confirm
or deny whether the candidate rules represent correct rules
without any modifications. Based on the results, we measure
precision and recall. We measure precision as the number of
confirmed rules among the mined rules: Ry, firmed / Rmined-
In other words, how many of the mined rules are correct rules.
Whereas, we measure recall as the number of confirmed rules
among the know rules we manually extracted in Section
Reonfirmed ! Rmanual- In other words, how many of the
known rules were we able to mine.

Edit Distance: The rejected candidate rules do not represent
correct rules in their currently mined form; however, they
might represent correct rules with some editing. Therefore,
we ask the domain expert to mark the rejected candidate rules
as partially correct rules if they can be edited into correct
rules and to record these edits. The editing process involves
the following operations:

« Remove a relationship from a candidate rule.

« Move a relationship from the antecedent to consequent, or
vice versa.

¢ Add a new relationship to a candidate rule. A new relation-
ship can be added independently or disjointly (i.e. join with
an existing relationship using “OR”).

"antecedent": [

"Field annotatedWith ConfigProperty",
"Field annotatedWith Inject",
1r

"consequent": [
"@ConfigProperty hasParam name:String"—t

! Partially correct candidate rule MD o

"antecedent": [
"Field annotatedWith ConfigProperty" | Refove
1r

"consequent": [

"Field annotatedWith Inject”

1 Correct rule

Fig. 4: Editing a partially correct rule into a correct rule.

Using the three operations above, we calculate the edit
distance between a candidate rule and its corresponding correct
rule. Assuming that each edit operation costs one unit, the edit
distance is the sum of all the edit operations suggested by the
expert for a candidate rule. For example, the edit distance
between the candidate and correct rule in Figure [Z_f] is two,
because it requires two edit operations (one Remove and one
Move). Ideally, we want the edit distance of a candidate rule
to be as close to 0 as possible, implying that minimal (or no)
effort is needed to convert a candidate rule into a correct one.

Newly Discovered Rules: After the editing process, we
collect all accepted rules, which include the confirmed rules
and the converted fully correct rules. We then check if these
accepted rules contain any new rules we did not previously
observe. The new rules are those rules that are not already
part of our manually extracted rules (i.e. not already known
rules). Ideally, we want to mine both known rules and new
rules, but mining new rules is more significant, because it
indicates that the code facts we discovered in Section [l are
not only limited to mining the known rules but also suitable
for mining new annotation usage rules. In fact, the whole idea
of our approach is to discover new rules based on limited
pre-existing knowledge.

In summary, we use precision, recall, edit distance, and new
rules to measure the effectiveness of our approach.

3) Results: We mine 23 candidate rules for MicroProfile.
Based on manual expert validation, we find that four out of
the 23 candidate rules are correct rules that do not require any
edits, which means that we mine rules with 17% precision.
We also find that none of the four correct rules are known
rules (recall 0%) and that they are all new rules.

Among the remaining 19 candidate rules, our domain expert
identifies eight candidate rules as partially correct, which
means they need some editing to be turned into correct usage
rules (full list on our artifact [[12]]). The remaining 11 candidate
rules do not correspond or provide starting points to any real
rules. Figure [5a shows the edit distance distribution for the
eight partially correct rules. This figure indicates that a domain
expert who is using these partially correct candidates as a
starting point to create usage rules/specifications would have
to perform 1.75 edit operations on average (median = 1.5).
Note that the average size of these eight rules is 2.75 items
(median = 3). The previously discussed Figure []is an example
of a real rule that we mine and confirm with the domain expert

4 [JAdd [Move Bl Remove

Edit Distance
w

N

2
Partially Correct Rules Edit Distance

(a) Edit distance distribution (b) Edit operation per rule

Fig. 5: Edit distance distribution of partially correct rules

that needs two edit operations.

Figure [5b] shows the distribution of needed edit operations
in each of the eight rules. The Remove operation is the most
frequent edit operation (43%), followed by the Move operation
(36%). The least needed operation is the Add operation (21%)
implying that our pattern mining approach captures most of
the items necessary to make up an actual rule. Out of the eight
partially correct rules, five rules require only reshuffling and
removal of some items to be turned into correct rules.

Overall, we mine four correct rules and eight partially
correct rules. This means that overall we have 12 confirmed
rules that our mining technique was able to mine as is
or provide a starting point for. Among these 12 rules, six
rules contain only annotations, four rules contain annotations
and program elements, and the remaining two rules contain
annotations and configuration files. We find that two of the
12 final rules are known rules. The remaining 10 rules for 10
different MicroProfile annotations are new rules, which means
these rules are not documented in the official MicroProfile
documentation.

Answer to RQI1: Our pattern mining approach finds 12
confirmed rules for MicroProfile, eight of them require some
editing to be turned into actual rules. Among the 12 con-
firmed rules, 10 are new rules that are not documented in the
official MicroProfile documentation.

B. RQ2: Usefulness of the mined rules in detecting violations

1) Evaluation Setup: To find violations of the confirmed
usage rules, we analyze real-world client projects that use
MicroProfile. We use the same set of 533 projects that we
use for mining candidate rules, mainly due to unavailability
of additional non-toy projects.

2) Method: We develop a simple static analysis tool based
on JavaParser to analyze code for violations. We first encode
checks for the 12 confirmed MicroProfile rules in our static
analysis tool. To find violations of a rule, our tool searches for
the relevant code element where the rule antecedent is true
but the consequent is false. For example, Figure [f] depicts a
correct usage (code snippet 1) and a violation (code snippet 2)
of one of the encoded MicroProfile rules. Given this analysis,
we then run our tool on each project’s latest commit to detect
violations of any of the encoded rules. We also run the analysis

antecedent: |
"Field annotatedWith RegistryType",
"@RegistryType hasParam Param type:MetricRegistry.Type",
"Field annotatedWith Inject"

1.

lconsequent: [

"Field MetricRegistry"

] Confirmed rule
...
iclass Foo \iclass Foo |
| @In]’ect{ ‘/ :E @Inject ¢ x H
| @RegistryType(type=MetricRegistry.Type.X) :: @RegistryType(type=MetricRegistry.Type.X) |
! bar; . " bar; i
P Code smippet LI il Code_snippet 2|

Fig. 6: Encoded rule with correct and incorrect usage.

on all commits from the projects’ commit history. Overall, our
goal is to find any real violations of these rules.

3) Results: We find 100 MicroProfile API usage violations
of five distinct usage rules in 16 client projects. Among the
100 violations, 48 violations are in the commit history of 10
projects, which have been already fixed by developers. Among
the 48 violations, 14 violations have been fixed by adding the
missing consequent, 23 violations have been fixed by removing
antecedents, and the Java files containing antecedents have
been removed for the remaining 11 violations. Apart from the
48 violations in the commit history, we find 52 violations in
the latest commit of eight projects. We submitted a pull request
(PR) per project to fix these 52 violations. To date, two of these
PRs which fixes three violations of three different rules in two
projects have been accepted [[12f]. The violations we detect
have two types of consequences: runtime exceptions and silent,
faulty behavior which does not result in any explicit error.
For example, in both open-source and proprietary projects, we
find violations of usage rule “If a method is annotated with
@OQutgoing, then the class containing the method should be
annotated with @ApplicationScoped or @Dependent, or there
should be beans.xml file in the project’. In the violation,
the developer uses the @ Ourgoing annotation, but does neither
add the other annotations nor have the beans.xml file in
the project. The violation leads to silent, faulty behavior,
because the target class is ignored by the runtime deeming
the @Outgoing annotation useless.

Answer to RQ2: We discover 100 violations of five Micro-
Profile rules in 16 projects. We submitted eight PRs for 52 of
the 100 violations that were not already fixed by developers.
Among the eight PRs, two PRs for three violations have been
accepted so far, which indicates that the violations are real.

C. Threats to Validity

Internal Validity. We set the support and confidence thresh-
olds based on our initial experiments, because there is no
precedent for setting the thresholds for mining annotation
usage rules. To ensure the correctness of our miner and static
analysis checkers, we created a set of synthetic (test) code
snippets that we use to mine relationships and verify whether
the mined set of relationships is equal to the expected one.

Construct Validity. We use edit distance as a proxy for how
much effort the API experts need to exert in the process of
confirming a final rule. However, an edit distance of four
is not necessarily “twice as bad” as an edit distance of

two, because not all edit operations are equally intellectually
demanding. For example, according to feedback from our
industrial collaborators, adding a missing relationship is harder
than moving or removing a relationship that is already present
in the rule. Thus, the edit distance we use is a simple proxy for
the effectiveness of the mined rules. More precise measures
may include (1) a longitudinal study where experts confirm
even more rules over time and where we measure the time it
takes them to decide about a rule, what the final rule looks like,
and additionally gather their feedback about the difficulty of
editing rules or (2) a controlled experiment where one group
of experts authors rules from scratch while the others use our
mined candidate rules as their starting points. In this paper,
we use only one expert to modify and validate the mined
rules. A different expert may consider a partially correct rule
as not a rule or modify a partially correct rule into a different
correct rule. However, it is highly unlikely that any of the
12 confirmed rules is an invalid rule. We also found that
developers have fixed violations of five of these confirmed
rules, further confirming their correctness.

External Validity. While several frameworks provide func-
tionality for building microservices, we focus only on Micro-
Profile APIs driven by a real industrial need. Therefore, we
do not know if our results generalize to other frameworks,
which can be part of future work. That said, apart from
the configuration-related code facts, all other code facts our
approach supports for mining annotation usage rules apply to
all Java-based frameworks. Therefore, we believe our approach
can be easily extended to mine annotation usage rules for
other frameworks by adding support for tracking framework-
specific configuration-related code facts. The majority of the
client projects we analyze are open-source projects. Although
we filtered projects to ensure that we analyze only high-
quality projects, the projects might not represent real-world
industrial projects. Therefore, we also added 81 closed-source
IBM projects that use MicroProfile.

VI. DISCUSSION

The motivation of conducting this research stemmed from
a real industry problem of ensuring that developers correctly
use annotations, specifically in MicroProfile. In this work, we
investigated one simple pattern mining approach for discover-
ing rules and its application in practice. We now discuss the
implications of our findings from this experience.

a) Potential for Rule Authoring: Our approach mines 4
fully correct and 8 partially correct rules. We also find that
it takes 1.75 edits, on average, to convert a partially correct
rule into a fully correct one. Overall, our approach mines 12
confirmed annotation usage rules. The results indicate that
using simple frequent itemset mining techniques is promising
for extracting annotation-based API usage rules. While 8
of the 12 confirmed mined rules require editing to become
complete usage specifications, we find that the majority of
these edits are reshuffling and removal of some items. Based
on domain experts’ feedback, it is easier to reshuffle or remove
an item rather than try to identify a missing one and add

it to a rule. Thus, our pattern mining approach provides an
effective starting point for framework developers to create API
usage rules, which avoids the need to write all specifications
manually from scratch. We are currently working on providing
more streamlined tools for MicroProfile developers to easily
confirm, reject, or modify mined rules.

b) Rule Coverage: We find 12 usage rules for MicroPro-
file, which shows the promise of this mining approach. How-
ever, our approach could mine only two of the 12 manually
extracted rules (i.e. known rules), suggesting that the approach
has limitations in terms of the types of rules it can mine. For
example, we are not able to mine rules that involve relation-
ships across members of a Java class, such as across two
methods. For example, Listing [2[shows two methods, where
getEntry?2 is a fallback method for getEntryl method.
The rule for using MicroProfile @Fallback specifies that the
value of annotation parameter, getEntry2 in this example,
should be a method that exists within the same class (or class
hierarchy) and should have the same method signature (i.e.,
the same types of parameters and return type). We are not able
to mine such usage rules, because we track relationships for
one entity at a time (method, class, field, or constructor). This
is an inherent limitation of frequent itemset mining, which
relies on transactions with sets of items. Each transaction must
have only unique items. To address this limitation, a possible
direction is to employ a more advanced representation such
as graph. In a graph, nodes may represent the entities (e.g.,
a method) and edges may represent the relationships on a
given entity. However, while the graph representation is likely
to capture more complex rules than the ones we mine, the
above rule is unlikely to be automatically extracted due to
its specificity. In other words, it is hard, if not impossible, for
pattern mining to infer that two methods’ signature (i.e., return
type and parameter list types) should be the same, unless we
explicitly encode a relationship that represents this knowledge.
However, encoding a relationship for each specific corner case
beats the purpose of inferring new knowledge through pattern
mining. Finding the right balance is an open problem [10],
[18]], which often requires domain-specific solutions.

We also find that frequent itemset mining has limitations in
mining the rules that have optional relationships. For example,
take the rule from Listing [l any method annotated with
@Asynchronous should return an object of type Future
or CompletionStage. Since client developers could use
Future or CompletionStage in their code, it is not guar-
anteed that either of them would appear frequently (i.e. above
the minimum support threshold) with @Asynchronous in
transactions. Even if one of them appears frequently (e.g,
85% of the time), the other is guaranteed to not appear fre-
quently (15%) due to mutually exclusive relationships unless
the support threshold is <50%. So either the approach will
not be able to mine such rules, or it will mine rules with
only one of the optional relationships. This is the reason we
had to add another optional relationship disjointly in three
different partially correct rules during the editing process
(see Section [V-A3). Although using a low support threshold

public class Foo {

// Call ‘getEntry2()" if ‘getEntryl () fails
@Fallback (fallbackMethod="getEntry2")

public String getEntryl (String id) { ... }
public String getEntry2 (String id) { ... }

Listing 2: Specifying a fallback method

(£50%) might preserve optional relationships in candidate
rules, the approach would generate a large number of useless
and redundant rules. One potential solution is to infer optional
relationships from annotation declarations and add them in
candidate rules. For example, if @A can be used on both
class and method, e.g. “Class annotatedWith QA" and “Method
annotatedWith QA”, and candidate rules have only one of
the optional relationships, we can add the other one in the
candidate rules. However, we cannot use this technique to infer
optional relationships for the other types of program elements,
such as method return and field types. In general, identifying
optional non-frequent relationships or patterns is a challenging
task [19]].

c) Value of rule mining: The real value of our approach
comes from its ability to infer new knowledge, which is the
discovery of new rules in our case. While our approach has
some limitations in terms of the types of rules it can mine, we
are still able to discover 10 new rules for MicroProfile. These
rules are not even documented in the official MicroProfile
documentation, which is a key source for client developers
to understand the usage of MicroProfile APIs. Note that we
found only 11 out of the 12 manually extracted rules in the
official documentation, which means our approach generates
almost the same number of new rules as the number of pre-
existing rules we knew about. The new rules are also diverse
in terms of the coverage of different MicroProfile annotations.
MicroProfile framework developers can use these new rules
to improve the official documentation, which in turn can help
client developers in preventing potential API misuse.

d) Employing Specification Checking: When evaluating
the impact of the confirmed mined rules, we find 100 Mi-
croProfile API usage violations of five unique rules in 16
real-world client projects. While these results suggest that
violations of some of our confirmed mined rules exist (and
that some rules are more likely to get violated), we do not
find violations of all the encoded rules. This may imply
that violations of these rules do not make it to committed
code, which suggests that providing tooling that detects these
violations more locally during development, e.g., in the IDE,
may be more effective for supporting developers.

VII. RELATED WORK

A. Writing API Usage Specifications

Automated static checkers can analyze source code to detect
incorrect API usages. However, these checkers need specifi-
cations that describe the correct usage. There is a plethora
of Domain Specific Languages (DSLs) [20] for writing API

usage specifications, often for a particular type of library, such
as CrySL for usages of Java cryptography libraries [21] or
uContracts for coding idioms and naming conventions for Java
projects [22]. The written specifications are then compiled into
static analysis checkers that automatically scan for violations.

However, to the best of our knowledge, these tools do not
support specifying metadata such as Java annotations. There
are DSLs specifically designed for writing annotation-based
usage specifications, such as Annabot [8], RSL [6], and a tool
based on XQuery [23]]. These DSLs provide logical quantifiers
such as “for all” and “there exists”, as well as logical relations
“AND”, “OR”, etc. to specify relations between annotations
and other program elements (e.g., return type). Some existing
techniques also provide custom Java annotations that are used
to add extra semantics on top of annotation declarations [24],
[25]]. These custom annotations are then pre-processed to ver-
ify correctness of annotations usages. The main problem with
all the above tools is that one has to first learn the specification
language and then write the API usage specifications manually,
which is difficult and time-consuming, which is why using data
(pattern) mining techniques to extract API usage specifications
automatically is often used [10].

B. Mining API Usage Specifications

The general assumption behind mining API usage specifica-
tions is that when dealing with massive amounts of client code
that uses some target API, the majority of repeated usages are
correct. Thus, data mining techniques can be used to find usage
patterns, i.e., parts of usages that commonly occur within
many usage examples. Researchers then treat these patterns
as usage specifications that are used to verify whether some
API usage is correct or incorrect [9].

Patterns can take a variety of forms such as unordered and
sequential [10]. There are also representations and techniques
that can capture more complex usages (e.g., data and control
flow) such as frequent sub-graph mining [9]], [26], [27].
Annotations, on the other hand, do not have complex (data
and control flow) semantics; it typically only matters whether
you apply a certain annotation, often with particular parame-
ter values. While graphs can potentially be used to capture
annotation usage patterns, graphs are complex and mining
them is computationally expensive. In our work, we also
consider non-code artifacts, such as configuration files. Some
existing approaches do mine usages from related artifacts, such
as configuration files [28] and code comments [28], [29].
However, these approaches are not based on pattern mining,
but rather rely on regular expressions or parsing heuristics
(e.g., looking for pre-defined words in code comments).

To the best of our knowledge, while there is a multitude
of tools that leverage pattern mining techniques to mine API
usage specifications from code [10]], [30]], [31]], none of them
mine annotation usage specifications. Liu et al. [32] recently
proposed a deep learning based model, trained on structural
(abstract syntax trees) and textual (tokens) contexts of source
code, to recommend Java annotations and detect their misuse.
However, the approach cannot provide precise reasons (i.e.

antecedents) for recommending annotations, because the ap-
proach does not identify which specific code element, among
all the considered code (the source code of entire class or
method), is used to recommend annotations. Consequently, the
approach cannot be used to extract rules for annotation usage
since we do not know the precondition (i.e., the antecedent
in our case) that is required to apply this rule. Moreover,
the approach cannot detect annotation misuses that are not
related to the annotation itself but are related to other relevant
(annotation-dependent) program elements, such as the misuse
example shown in Figure [6] where the type of the field is
incorrect. Our manually extracted rules and confirmed mined
rules show that annotation-dependent program elements are
critical components of MicroProfile annotation usage rules.

VIII. CONCLUSION

In this paper, we present an industrial case study of min-
ing annotation usage rules of the enterprise microservices
framework, MicroProfile. Through our approach, we were
able to mine 12 confirmed MicroProfile usage rules, 10 of
which are not even documented in the official MicroProfile
documentation. We find 100 violations of five rules in 16
MicroProfile projects. The violations may lead to run-time
exceptions or worse, silent faulty behaviors that are hard to
debug, which shows the usefulness of the mined rules. Our
results show the potential of pattern mining as a starting point
for automatically creating annotation usage specifications for
MicroProfile as well as the need for tools that could assist
client developers in using these specifications to detect and
prevent annotation misuse.

ACKNOWLEDGMENTS

This research was funded by the IBM Center for Advanced
Studies (CAS). Also, thanks to Karim Ali for feedback on
various stages of this work.

REFERENCES
1

—

MicroProfile, “Optimizing Enterprise Java for a Microservices Architec-

ture,” https://microprofile.io/, 2021, [accessed 14-March-2022].

Emily Jiang, “Asynchronous,” https://download.eclipse.org/microprofile/

microprofile-fault-tolerance- 3.0/apidocs/org/eclipse/microprofile/

faulttolerance/Asynchronous.html, 2020, [accessed 14-March-2022].

[3] Z. Yu, C. Bai, L. Seinturier, and M. Monperrus, “Characterizing the
usage, evolution and impact of java annotations in practice,” IEEE
Transactions on Software Engineering, vol. 47, no. 5, pp. 969-986, 2019.

[4] A. K. Jha and S. Nadi, “Annotation practices in android apps,” in 2020

IEEE 20th International Working Conference on Source Code Analysis

and Manipulation (SCAM). 1EEE, 2020, pp. 132-142.

P. Pinheiro, J. C. Viana, M. Ribeiro, L. Fernandes, F. Ferrari, R. Gheyi,

and B. Fonseca, “Mutating code annotations: An empirical evaluation

on java and c# programs,” Science of Computer Programming, vol. 191,

p. 102418, 2020.

Y. Zhang, “Checking metadata usage for enterprise applications,” Ph.D.

dissertation, Virginia Tech, 2021.

[7] M. Fihndrich, “Static verification for code contracts,” in International
Static Analysis Symposium. Springer, 2010, pp. 2-5.

[8] 1. Darwin, “Annabot: A static verifier for java annotation usage,”
Advances in Software Engineering, vol. 2010, 2009.

[91 A. Sven, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “Inves-

tigating next steps in static api-misuse detection,” in 2019 IEEE/ACM

16th International Conference on Mining Software Repositories (MSR).

IEEE, 2019, pp. 265-275.

[2

—

[5

=

[6

i}

[10]

(1]

[12]
[13]
[14]
[15]
[16]

(17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated api property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613-637, 2012.

S. Nielebock, R. Heumiiller, K. M. Schott, and F. Ortmeier, “Guided
pattern mining for api misuse detection by change-based code analysis,”
Automated Software Engineering, vol. 28, no. 2, pp. 1-48, 2021.
UAlberta SMR Research Group, “Mining annotation usage rules,” https:
//github.com/ualberta- smr/MiningAnnotationUsageRules, 2022.

G. Piatetsky-Shapiro, “Discovery, analysis, and presentation of strong
rules,” Knowledge discovery in databases, pp. 229-238, 1991.

C. Borgelt, “Frequent item set mining,” Wiley interdisciplinary reviews:
data mining and knowledge discovery, vol. 2, no. 6, pp. 437-456, 2012.
JavaParser.org, “JavaParser - Home,” http://javaparser.org/, 2022, [ac-
cessed 16-March-2022].

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” ACM sigmod record, vol. 29, no. 2, pp. 1-12, 2000.

H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Pfp: parallel
fp-growth for query recommendation,” in Proceedings of the 2008 ACM
conference on Recommender systems, 2008, pp. 107-114.

S. P. Jashma, D. Acharya, and N. S. Reddy, “A list based redundancy
removal approach by mining closed and non-derivable frequent item-
sets,” in 2020 4th International Conference on Intelligent Computing
and Control Systems (ICICCS). 1EEE, 2020, pp. 52-58.

S. Thummalapenta and T. Xie, “Alattin: Mining alternative patterns
for detecting neglected conditions,” in 2009 IEEE/ACM International
Conference on Automated Software Engineering. 1EEE, 2009, pp. 283—
294.

M. Fowler, Domain-specific languages. Pearson Education, 2010.

S. Kriiger, J. Spith, K. Ali, E. Bodden, and M. Mezini, “Crysl: An
extensible approach to validating the correct usage of cryptographic
apis,” IEEE Transactions on Software Engineering, vol. 47, no. 11, pp.
2382-2400, 2019.

A. Lozano, K. Mens, and A. Kellens, “Usage contracts: Offering
immediate feedback on violations of structural source-code regularities,”
Science of Computer Programming, vol. 105, pp. 73-91, 2015.

M. Eichberg, T. Schifer, and M. Mezini, “Using annotations to check
structural properties of classes,” in International Conference on Funda-
mental Approaches to Software Engineering, 2005, pp. 237-252.

A. Kellens, C. Noguera, K. De Schutter, C. De Roover, and T. D’Hondt,
“Co-evolving annotations and source code through smart annotations,”
in 2010 14th European Conference on Software Maintenance and
Reengineering. 1EEE, 2010, pp. 117-126.

J. L. de Siqueira, F. F. Silveira, and E. M. Guerra, “An approach for
code annotation validation with metadata location transparency,” in In-
ternational Conference on Computational Science and Its Applications.
Springer, 2016, pp. 422-438.

H. J. Kang and D. Lo, “Active learning of discriminative subgraph
patterns for api misuse detection,” IEEE Transactions on Software
Engineering, 2021.

D. Nam, A. Horvath, A. Macvean, B. Myers, and B. Vasilescu, “Marble:
Mining for boilerplate code to identify api usability problems,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2019, pp. 615-627.

C. Wen, Y. Zhang, X. He, and N. Meng, “Inferring and applying
def-use like configuration couplings in deployment descriptors,” in
2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2020, pp. 672-683.

A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezze,
and S. D. Castellanos, “Translating code comments to procedure spec-
ifications,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018, pp. 242-253.

Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit pro-
gramming rules and detecting violations in large software code,” ACM
SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp. 306-315,
2005.

T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Graph-based mining of multiple object usage patterns,”
in Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT symposium on the
Foundations of Software Engineering, 2009, pp. 383-392.

Y. Liu, Y. Yan, C. Sha, X. Peng, B. Chen, and C. Wang, “Deepanna:
Deep learning based java annotation recommendation and misuse detec-
tion,” in 2022 29th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). 1EEE, 2022.

https://microprofile.io/
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/apidocs/org/eclipse/microprofile/faulttolerance/Asynchronous.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/apidocs/org/eclipse/microprofile/faulttolerance/Asynchronous.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/apidocs/org/eclipse/microprofile/faulttolerance/Asynchronous.html
https://github.com/ualberta-smr/MiningAnnotationUsageRules
https://github.com/ualberta-smr/MiningAnnotationUsageRules
http://javaparser.org/

	Introduction
	Background
	Microservices and MicroProfile
	Java annotations & API usage rules
	Frequent Itemset Mining

	Investigating Properties of MicroProfile Annotation-based API Usages
	Mining MicroProfile Annotation Usages
	Parsing Input Client Projects to Extract Transactions
	Pre-processing Transactions
	Mining Frequent Itemsets
	Optimizing Frequent Itemsets

	Generating Candidate Rules

	Evaluation
	RQ1: Effectiveness of our approach
	Evaluation Setup
	Method
	Results

	RQ2: Usefulness of the mined rules in detecting violations
	Evaluation Setup
	Method
	Results

	Threats to Validity

	Discussion
	Related Work
	Writing API Usage Specifications
	Mining API Usage Specifications

	Conclusion
	References

